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We present a simple autocatalytic reaction-diffusion model for two variables, which shows for fixed param-
eter values the simultaneous stable coexistence of particle solutions as well of two types of hole solutions. The
associated spatially homogeneous system is characterized by the coexistence of one stable fixed point and a
stable limit cycle solution. We compare our results to other dissipative systems which have for fixed parameters
either stable particle or stable hole solutions including the quintic complex Ginzburg-Landau equation and the
envelope equation for optical bistability as well as other reaction-diffusion models.
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The study of reaction-diffusion(RD) systems is a growing
sub field of pattern formation in nonequilibrium systems,
which has become a well-established field of physics[1].
One of the most interesting recent developments in autocata-
lytic chemical reactions is the investigation of localized so-
lutions and pulses. This includes, for example, self-
replicating spots[2–4] and the interaction of pulses[5,6].
The study of stable localized solutions and their interaction
has attracted increasing attention within the framework of
several classes of prototype evolution equations in the study
of dissipative systems including the quintic complex
Ginzburg-Landau equation[7–9], order parameter equations
[10,11], and phase equations[12,13]. Much less work has
been done on stable hole solutions in these dissipative pro-
totype equations[14,15] (compare also the review in[16]).
For optical bistability a transition from stable particle to
stable hole solutions has been described[17].

Here we study the question whether it is possible to have
for fixed parameters in dissipative evolution equations stable
particle as well as stable hole solutions simultaneously and
what the underlying mechanisms are to achieve such a situ-
ation. Motivated by the very rich behavior well known for
simple two variable reaction diffusions systems, we chose a
model such that it has for a large parameter range a stable
limit cycle coexisting with a stable fixed point. This situation
has been established to give rise to stable particle solutions
for reaction diffusion systems[6] as well as for the quintic
complex Ginzburg-Landau equation[7,8]. We show numeri-
cally that in the vicinity of the parameter values for which
the speed of wall solutions passes through zero, a class of
holes exists stably, which we call 2p holes, embedded in the
regime of existence of another class of stable hole solutions
(called p holes). For a small range of parameters all three
classes of stable localized solutions occur simultaneously:
two classes of stable holes as well as stable particle solu-
tions.

The reaction-diffusion model studied has the form

u̇ = m1u − m2v + bru
3 + gru

5 + uxx, s1d

v̇ = m2u + m3v + biu
3 + Dvxx, s2d

where length and time scales have already been rescaled to
reduce the number of parameters in the system to the ones
that are independent. The parametersbr andgr in Eq. (1) are
taken to have a destabilizing cubic termsbr .0d and a sta-
bilizing quintic termsgr ,0d to guarantee stability for large
values ofu. Without the coupling tov, Eq. (1) would give
rise for m1,0 to five stationary points, three of which are
stable. Equations(1) and (2) possess the symmetryu→−u
andv→−v simultaneously, but not separately. The linearized
version of Eqs.(1) and (2) has the standard structure for
reaction-diffusion systems giving rise to oscillatory motions.
We note that the term,u3 in Eq. (2) is nonpotential in na-
ture.

It turns out that the phase diagram associated with Eqs.
(1) and (2) is in general extremely rich and complex. A de-
tailed discussion will therefore be deferred to a longer paper
[19]. Here we focus on the case where the dynamical system
associated with Eqs.(1) and(2) has one stable fixed point for
u=v=0 and a stable limit cycle. This structural situation,
which is sketched in Fig. 1, arises very frequently for reac-
tion diffusion systems and is therefore of direct importance
for experimental studies in the field of autocatalytic chemical
reactions(compare, for example, Ref.[18].)

Throughout the rest of this paper we chose the parameter
values br =3, gr =−2.75, m2=1.5, m1=0, m3=−0.2, andD
=1. We then discuss the phenomena that arise as a function
of bi. In this paper we use periodic boundary conditions. We
have also checked other boundary conditions(von Neumann)
to verify that there is no qualitative change for the phenom-
ena observed upon changing the boundary conditions. Here
we address the question which types of stable localized so-
lutions occur in addition to the stable spatially homogeneous
solutionsu=v=0 and the stable limit cycle solution. In par-
ticular we demonstrate that one can have—for fixed values of
all the parameters in the two equations—stable particles and*Electronic address: yumino@stat.phys.kyushu-u.ac.jp
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two types of stable holes. In addition we would like to stress
that the stable particle solutions and one class of stable hole
solutions can appear simultaneously over a fairly large range
of values of the parameterbi. The resulting phase diagram is
plotted in Fig. 2. Inspecting Fig. 2 it emerges that stable
particles as well as two classes of stable hole solutions occur
for positive as well as for negative values ofbi. While the
structure and the sequence of localized solutions is similar,
there is, however, nobi →−bi symmetry, which can also be
seen immediately by inspecting the parameter values given
in the caption of Fig. 2 marking the limits of the occurrence
of the various types of solution. Next we characterize the
nature of these three classes of stable localized solutions.

Figure 3(a) shows a snapshot of the modulusR, R
=Îu2+v2, and the variableu as a function of space. The
particle solutions act as a sink of waves traveling towards the
particle for negative values ofbi and as a source for positive
values ofbi. Their maximum amplitude is comparable to the
maximum amplitude of the spatially homogeneous limit
cycle solution. In addition, the modulus of the particlelike
solutions carries out a periodic breathing motion of the maxi-
mum amplitude—because the limit cycle is not a circle—
sending out traveling waves, which become particularly no-
ticeable in the local wave vector. This phenomenon as well
as an analytic approximation scheme to capture all essential
ingredients of these breathing particles will be described in
[20], generalizing the technique applied previously for fixed
shape and breathing localized solutions of the quintic com-
plex Ginzburg-Landau equation[21,22]. As ubiu becomes

smaller, the width of the particle solution increases, while it
decreases whenubiu becomes larger. When the boundaries for
the stable existence of particles are crossed, the particles dis-
appear by a filling in for sufficiently small values ofubiu,
while they collapse forubiu sufficiently large. Furthermore,
we note that one obtains a period doubling leading to an
additional lateral breathing motion for positive values ofbi
as one approaches the lower boundary of their stable exis-
tence, denoted bybp+1 in Fig. 2. This is the analog of the
transition to the periodically breathing localized states in the
complex quintic Ginzburg-Landau equation.

Figure 3(b) shows a snapshot of ap hole. The reason for
this notation becomes clear from an inspection of the phase
portraits shown in Figs. 4(b) and 4(e) in which the trajectory
goes through the center of the limit cycle. This also demon-
strates thatp holes reach zero modulus,R=0. For large dis-

FIG. 1. This plot shows the generic behavior of the dynamical
system(without spatial degrees of freedom) for the regime of pa-
rameter space considered in this note. The null klines of the ODE’s
are shown as solid black lines. The origin of theu-v plane corre-
sponds to a stable fixed point. The thick solid black line is a stable
limit cycle, while the unstable limit cycle is shown as a dashed line.
bi =1.600.

FIG. 2. The phase diagram for the stable ex-
istence of particles,p holes, and 2p holes is
shown as a function ofbi. The upper and lower
boundaries for particles,p and 2p holes for posi-
tive and negative values ofbi are given bybp−1

=−0.775, bp−2=−1.988, bp+1=1.582, bp+2

=7.655, bph−1=−0.432, bph−2=−0.877, bph+1

=0.941, bph+2=2.165, b2ph−1=−0.735, b2ph−2

=−0.779,b2ph+1=1.500,b2ph+2=1.664

FIG. 3. A snapshot is shown for a particle, ap hole, and a 2p
hole as a function of space. The quantities plotted are the modulus
Rsx,td=Îu2+v2 and the variableusx,td. For p holes the modulus
reaches zero while this is not the case for 2p holes. The value ofbi

is chosen such that all three localized objects stably exist for the
same parameter value:bi =1.600.
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tance from the hole,R reaches asymptotically the value of
the spatially homogeneous limit cycle solution. In Fig. 5 we
show anx− t plot of a p hole from which the phase jump of
p at the core is clearly visible. Inspecting Fig. 2, we see that
there is a considerable range of parameter values ofbi, both
for positive and negative values, over which stable particles
as well as stablep holes exist simultaneously. Forbi .0 the
stable hole solutions acts as sinks—a fact also brought out by
Fig. 5—while forbi ,0 they act as sources. Correspondingly
a source(or a sink) appears elsewhere in the system. Forubiu
sufficiently small, thep holes disappear by collapsing while
for ubiu sufficiently large they are filling in. We also note that
the width of thep holes is approximately constant. Forp
holes the wavelength is larger for smallerubiu, while it be-
comes smaller for largerubiu.

Figure 3(c) shows a snapshot of a 2p hole. Its detailed
nature with respect to the phase space is brought out in the
phase portraits shown in Figs. 4(c) and 4(f). Note that the
modulus of the 2p holes stays finite near their center and
does not touch 0 in contrast to the case of thep holes. Far
away from the center theirR value is comparable to that of
the spatially homogeneous limit cycle solution. For negative

values ofbi, 2p holes act as sources while for positive val-
ues ofbi they act as sinks. 2p holes exist stably only over a
narrow parameter range, which is included in the range of
existence of stablep holes. It appears most important to
stress that the existence of stable 2p holes is connected with
the region of parameters for which the speed of wall solu-
tions passes through zero. In addition, their range of stable
existence overlaps with that of stable particle solutions. Thus
we can get for a range of parameters for a fixed value of all
the parameters in the equation the simultaneous stable exis-
tence of particles,p holes, and 2p holes. For sufficiently
large values ofubiu the 2p holes vanish by filling in while for
sufficiently small values ofubiu the 2p holes vanish by mak-
ing a transition to ap hole. We have tested the stability of
both, 2p holes andp holes against noisy perturbations. As
expected from their limited range of existence and from their
transitions top holes for sufficiently small values ofubiu, the
2p holes are more sensitive to noisy perturbations: one needs
a noise amplitude that is about one order of magnitude
higher to annihilate ap hole. The latter noise amplitude is
comparable to that necessary to destroy a breathing localized
solution of the complex quintic Ginzburg-Landau equation
[9].

The particle solutions discussed resemble most closely the
fixed shape localized states for the quintic complex
Ginzburg-Landau equation[9]. In this case one also has a
stable limit cycle solution and a stable fixed point. There is
also an example from reaction diffusion systems for which
one has observed laterally breathing localized pulses[6],
which occurs under the same conditions: namely, the stable
coexistence of a limit cycle and a stationary fixed point.
While one has seen a transition from a particle solution to a
hole solution as a function of one parameter for the case of
optical bistability[17], we are not aware of any report of the
simultaneous existence of stable particle and hole solutions
for a fixed set of parameters in an underlying evolution equa-
tion for a dissipative system, regardless whether this would
be an envelope equation[23,24], a phase equation[12], an

FIG. 4. Phase portraits in theu-v plane are shown for positive
and negative values ofbi. For the left columnbi =1.600 and for the
right columnbi =−0.777.(a) and(d) show stable particle solutions,
(b) and (e) stablep holes, and(c) and (f) stable 2p holes. The
curves in the left column are structurally mirror images of the
curves in the right column. All curves are rotating counterclock-
wise. This observation is closely related to the fact that for positive
values ofbi particles act as sources of traveling waves, while 2p
and p holes act as sinks. For negative values ofbi the opposite
situation prevails: particles correspond to sinks, while 2p and p
holes act as sources of traveling waves.

FIG. 5. We show anx-t plot for a p hole andbi =1.600. The
quantity shown isusx,td; u.0: white,u,0: black. From the plot it
is clear that thep holes act as a sink and that the phase jump at
annihilation isp. The rounding off in thex-t plot nearx=0 andx
=400 is caused by the periodic boundary conditions used.
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order parameter equation[11,25], or a reaction-diffusion sys-
tem[26]. We note that for the latter systems we have in mind
a particle or hole in all concentrations; a dip in one concen-
tration and an enhancement in the other are well documented
[27] and of completely different origin. Similarly there also
appears to exist no report in the literature of the stable and
simultaneous existence of two types of holes, such as thep
and 2p holes described here, for fixed parameters in a dissi-
pative model.

In conclusion we have shown in this Rapid commnnica-
tion that three different types of localized solutions can sta-
bly exist simultaneously for a fixed set of parameter values

in a simple reaction-diffusion system for two variables,
which allows for the coexistence of a stable limit cycle so-
lution and a stable fixed point. Since the RD system studied
has properies that are common to large class of models, we
soon expect experimental observations of the phenomena
predicted here.

Y.H. thanks the Alexander von Humboldt-Foundation for
support. O.D. thanks the support of FAI(PRoject ICIV-001–
04, Universidad de los Andes) and Fondecyt (Project
1020374).

[1] M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys.65, 3
(1993).

[2] K. J. Lee, W. D. McCormick, Q. Ouyang, and H. L. Swinney,
Nature(London) 369, 215 (1994).

[3] W. N. Reynolds, J. E. Pearson, and S. P. Dawson, Phys. Rev.
Lett. 72, 2797(1994).

[4] Y. Hayase and T. Ohta, Phys. Rev. Lett.81, 1726(1998).
[5] J. Kosek and M. Marek, Phys. Rev. Lett.74, 2134(1995).
[6] T. Ohta, Y. Hayase, and R. Kobayashi, Phys. Rev. E54, 6074

(1996).
[7] O. Thual and S. Fauve, J. Phys.(Paris) 49, 503 (1988).
[8] H. R. Brand and R. J. Deissler, Phys. Rev. Lett.63, 2801

(1989).
[9] R. J. Deissler and H. R. Brand, Phys. Rev. Lett.72, 478

(1994).
[10] R. E. Goldstein, G. H. Gunaratne, L. Gil, and P. Coullet, Phys.

Rev. A 43, 6700(1991).
[11] H. Sakaguchi and H. R. Brand, Physica D117, 95 (1998).
[12] H. R. Brand and R. J. Deissler, Phys. Rev. Lett.63, 508

(1989).
[13] H. R. Brand and R. J. Deissler, Phys. Rev. A46, 888 (1992).

[14] K. Nozaki and N. Bekki, J. Phys. Soc. Jpn.53, 1581(1984).
[15] H. Sakaguchi, Prog. Theor. Phys.85, 417 (1991).
[16] I. Aranson and L. Kramer, Rev. Mod. Phys.74, 99 (2002).
[17] H. R. Brand and R. J. Deissler, Physica A216, 288 (1995).
[18] H. H. Rotermund, S. Jakubith, A. von Oertzen, and G. Ertl,

Phys. Rev. Lett.66, 3083(1991).
[19] Y. Hayase, O. Descalzi, and H. R. Brand(unpublished).
[20] O. Descalzi, Y. Hayase, and H. R. Brand Phys. Rev. E69

026121(2004).
[21] O. Descalzi, M. Argentina, and E. Tirapegui, Phys. Rev. E67,

015601(2003); Int. J. Bifurcation Chaos Appl. Sci. Eng.12,
2459 (2002).

[22] O. Descalzi, Physica A327, 23 (2003).
[23] A. C. Newell and J. A. Whitehead, J. Fluid Mech.38, 279

(1969).
[24] H. R. Brand, P. S. Lomdahl and A. C. Newell, Phys. Lett. A

118, 67 (1986); Physica D23, 345 (1986).
[25] J. Swift and P. C. Hohenberg, Phys. Rev. A15, 319 (1977).
[26] S. Koga and Y. Kuramoto, Prog. Theor. Phys.63, 106 (1980).
[27] V. Petrov, K. Scott, and K. Showalter, Proc. R. Soc. London,

Ser. A 347, 631 (1994).

HAYASE, DESCALZI, AND BRAND PHYSICAL REVIEW E69, 065201(R) (2004)

RAPID COMMUNICATIONS

065201-4


